

V2V EDTECH LLP

Online Coaching at an Affordable Price.

OUR SERVICES:

- Diploma in All Branches, All Subjects
- Degree in All Branches, All Subjects
- BSCIT/CS
- Professional Courses
- +91 93260 50669
- **► V2V EdTech LLP**
- w2vedtech.com
- o v2vedtech

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

WINTER-18 EXAMINATION

Subject Name: Data Structure using C Model Answer Subject Code:

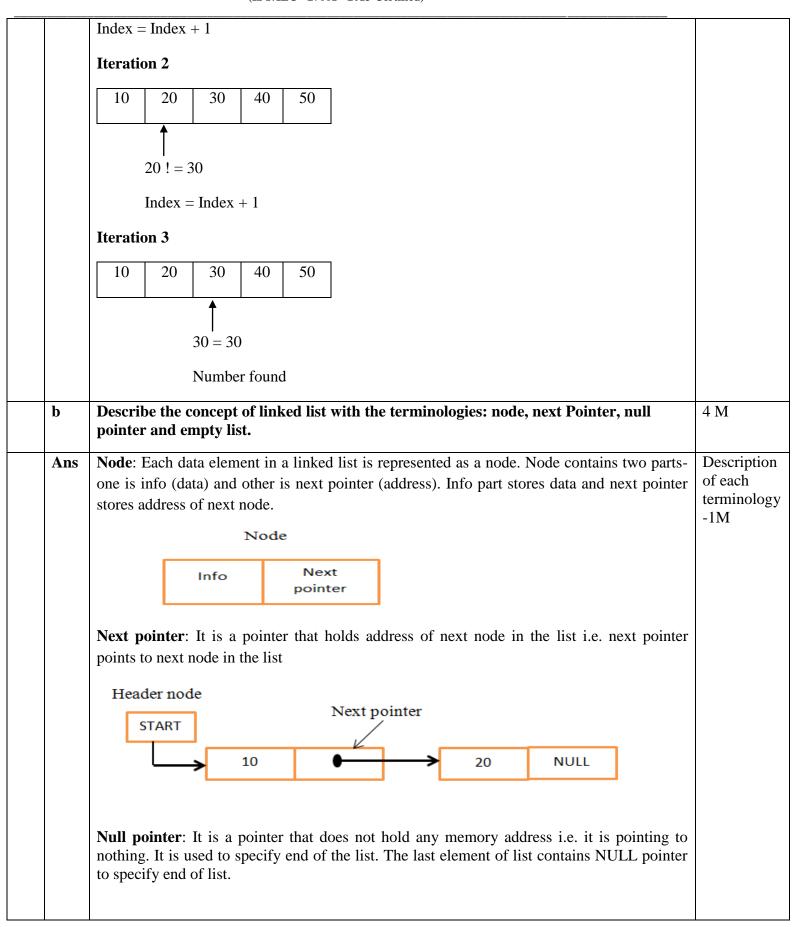
22317

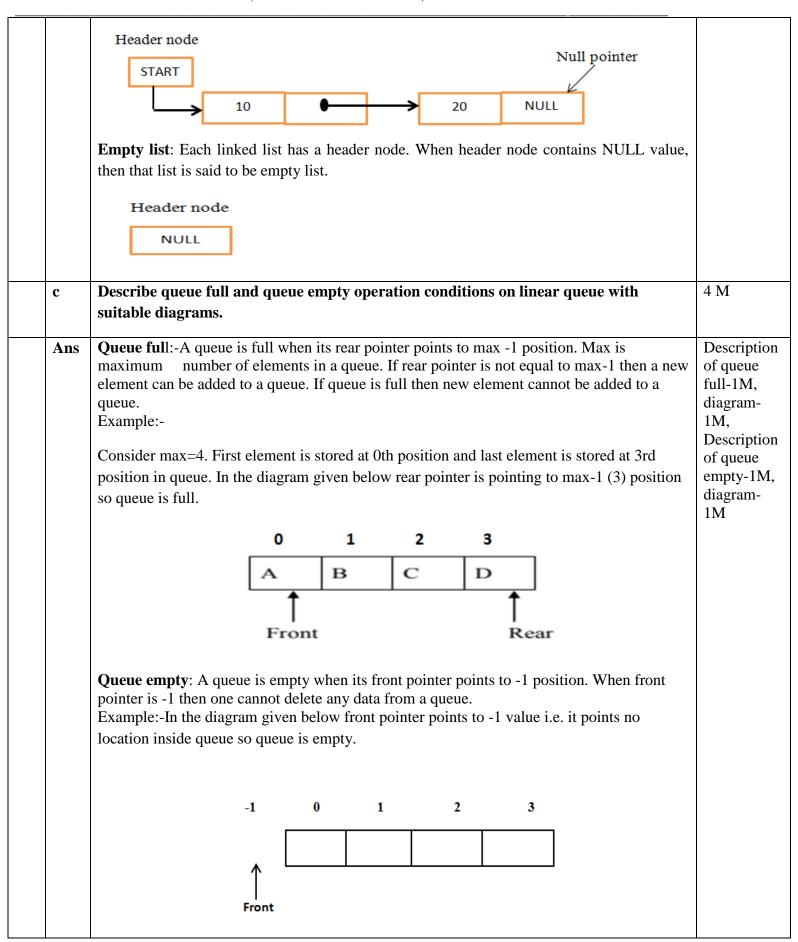
Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No	Sub Q. N.	Answer	Marking Scheme
1		Attempt any FIVE of the following:	10 M
	a	Define the term algorithm.	2 M
	Ans	Algorithm is a stepwise set of instructions written to perform a specific task.	Correct definition 2M
	b	List any 4 applications of queue.	2 M
	Ans	 In computer system to maintain waiting list for single shared resources such as printer, disk, etc. It is used as buffers on MP3 players, iPod playlist, etc. Used for CPU scheduling in multiprogramming and time sharing systems. In real life, Call Center phone systems will use Queues, to hold people calling them in an order, until a service representative is free. Handling of interrupts in real-time systems. Simulation 	Any four apllications-1/2 M each
	С	Describe following terms w.r.to tree: (i) Leaf node (ii) Level of node	2 M
	Ans	Example:	Description of each term 1M

	(i) Leaf node: A node without any chir Nodes B and C are leaf node as sho (ii) Level of node: Position of a node is Level of node B is 1 as shown in ab	own in above example. In the hierarchy of a tree is called as lever	vel of node.	
d	Differentiate between stack and que	eue.(Any two points)	2 M	
Ans	Stack 1. Stack is a data structure in which insertion and deletion operations are performed at same end.	Queue 1. Queue is a data structure in which insertion and deletion operations are performed at different ends.	Any two correct differences 1M each	S-
	2. In stack an element inserted last is deleted first so it is called Last In First Out list.	2. In Queue an element inserted first is deleted first so it is called First In First Out list.		
	3.In stack only one pointer is used called as stack top	3.In Queue two pointers are used called as front and rear		
	4. Example: Stack of books	4. Example : Students standing in a line at fees counter		
	5.Application:	5. Application:		
	RecursionPolish notation	 In computer system for organizing processes. In mobile device for sending receiving messages. 		




	6. Representation: Usi	ing array	6. Representation:	Using array	
		12	A B C	D Rear	
e	Describe undirected gr	aph with suit	table example.		2 M
Ans	them is known as undire	cted graph. n edge exists b	between two nodes A	any direction associated was and B then the nodes can idirectional.	1M, example-
			T		
e	In the above example, ea				2.14
f	In the above example, ea	ar data struct	directional. ture and non-linear of		2 M
f	In the above example, ear Define the terms: Linear Linear Data Structure: A sequence is known as line Example: stack, queue	ar data structure data structure near data struc re: A data struc	directional. ture and non-linear of the end		icular Each term definition 1M
Ans	In the above example, ear Define the terms: Linear Linear Data Structure: A sequence is known as line Example: stack, queue Non-Linear data structure particular sequence is known as line	ar data structure data structure near data structure re: A data structure nown as nonling.	directional. ture and non-linear of the end which all data electure. acture in which all data hear data structure.	ments are stored in a part	icular Each term definition 1M
	In the above example, ear Define the terms: Linear Linear Data Structure: A sequence is known as line Example: stack, queue Non-Linear data structure particular sequence is known as line Example: graph and tree	ar data structure data structure near data structure re: A data structure nown as nonling.	directional. ture and non-linear of the end which all data electure. acture in which all data hear data structure.	ments are stored in a part	icular Each term definition 1M
Ans	In the above example, ear Define the terms: Linear Linear Data Structure: A sequence is known as line Example: stack, queue Non-Linear data structure particular sequence is known as line Example: graph and tree convert infix expression	ar data structure data structure near data structure re: A data structure nown as nonling.	directional. ture and non-linear of the end which all data electure. acture in which all data hear data structure.	ments are stored in a part	icular Each term definition 1M in any 2 M Correct prefix
Ans	In the above example, ear Define the terms: Linear Linear Data Structure: A sequence is known as line Example: stack, queue Non-Linear data structure particular sequence is known as line Example: graph and tree convert infix expression (A+B)*(C/G)+F	ar data structure data structure near data structure re: A data structure nown as nonling nown into prefix of	directional. ture and non-linear of the end which all data elements. Acture in which all data near data structure. expression:	ments are stored in a part	icular Each term definition 1M in any 2 M Correct

		(A+B)*(C/G)		+)	F	
		(A+B)*(C/G	G	+)	GF	
		(A+B)*(C/	/	+)/	GF	
		(A+B)*(C	C	+)/	CGF	
		(A+B)*((+	/CGF	
		(A+B)*	*	+*	/CGF	
		$(\mathbf{A}+\mathbf{B})$		+*)	/CGF	
			B	ŕ		
		(A+B		+*)	B/CGF	
		(A+	+	+*)+	B/CGF	
		(A	A	+*)+	AB/CGF	
			(+*	+AB/CGF	
					*+AB/CGF	
					+*+AB/CGF	
2		Attempt any THR	EEE of the follo	owing:		12 M
	a	Describe working	of linear searc	ch with example.		4 M
	Ans	Comparison starts comparison reaches As each element is time. Time complet list.	with first elens to the last elens checked with exity of linear sorted array:-On s to an element	ment from the list ment of the list. search element, the search is O (n) when sorted array search greater than search	ch element from the list in a sequence and continues till number is found the process of searching requires more ren indicates number of elements and takes place till element is found to element.	or description 2M, Any correct example- 2M
		Input list 10, 20, 30	_		ndex =0	
		Iteration 1				
		10 20 30	0 40 50			
		10! = 30				

d	Differentiate	between general tree and binar	ry tree. (any four points)	4 M
Ans	Sr.	General Tree	Binary Tree	Any four relevant
	1	A general tree is a data structure in which each node can have infinite number of children	A Binary tree is a data structure in which each node has at most two nodes i.e. left and right	differences -1M each
	2	In general tree, root has indegree 0 and maximum outdegree n.	In binary tree, root has indegree 0 and maximum outdegree 2.	
	3	In general tree, each node have in-degree one and maximum out-degree n .	In binary tree, each node have in-degree one and maximum out-degree 2 .	
	4	Height of a general tree is the length of longest path from root to the leaf of tree. Height(T) = {max(height(child1) , height(child2) , height(child-n)) +1}	<pre>Height of a binary tree is : Height(T) = { max (Height(Left Child) , Height(Right Child) + 1}</pre>	
	5	Subtree of general tree are not ordered	Subtree of binary tree is ordered .	
	6	General tree	Binary Tree	
			Root	
3	Attempt any	THREE of the following:		12 M
a	Write a C pro	ogram for deletion of an elemen	nt from an array.	4 M
Ans	printf("E scanf("% printf("E for (c = scanf(printf("E scanf("%	[100], position, c, n; Enter number of elements in array 6d", &n); Enter %d elements\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		4M for correct logic & program code

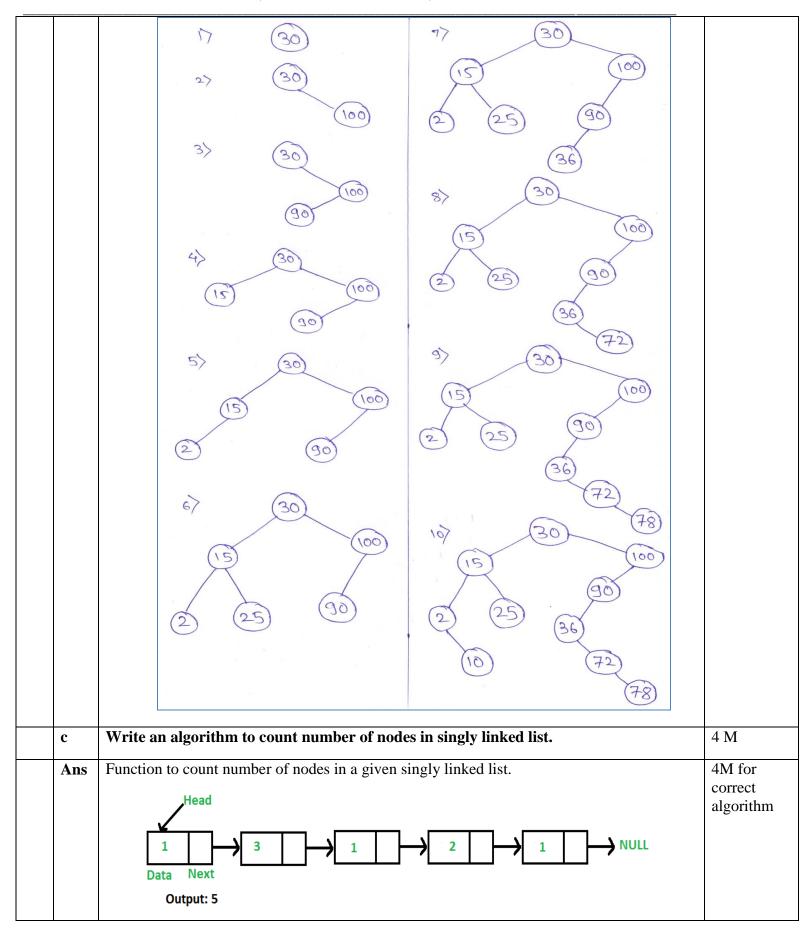
MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

```
printf("Deletion not possible.\n");
            else
              for (c = position - 1; c < n - 1; c++)
               array[c] = array[c+1];
             printf("Resultant array:\n");
              for (c = 0; c < n - 1; c++)
               printf("%d\n", array[c]);
            return 0;
      Convert following expression into postfix form. Give stepwise procedure.
                                                                                                  4 M
b
      A+B↑C*(D/E)-F/G.
      Consider input expression as (A+B\uparrow C*(D/E)-F/G)
                                                                                                  Correct
Ans
                                                                                                  Postfix
                       Operation
                                       Postfix Expression
        Scanned
                                                                                                  Expression
        Symbol
                       stack
                                                                                                  4M
                       (
        A
                                        A
                       (+
                                        A
        +
        В
                       (+
                                        AB
                                        AB
        \uparrow
                       (+1
        \mathbf{C}
                                        ABC
                       (+1
        *
                       (+*
                                        ABC↑
                                        ABC↑
                       (+*(
                       (+*(
                                        ABC↑D
        D
                       (+*(/
                                        ABC↑D
                                       ABC↑DE
       Ε
                       (+*(/
                       (+*
                                        ABC↑DE/
                       (-
                                        ABC↑DE/*+
                                        ABC↑DE/*+F
                       (-
```


	TACITY OF THE PROPERTY OF THE	(I	SO/IEC -	27001 -	2013 Cei	rtified)					
	/	(-/		ABC	C↑DE/*	+F					
	G	(-/		ABC	C↑DE/*	+FG					
)	EMPT	Y	ABC	C↑DE/*	+FG/-		_			
								_			
	POSTFIX EX	PRESSIC	N: AB	C↑DE	/*+FG	/-					
c	Find the position below. Show e		nent 29	using	binar	y searc	h meth	od in a	an arra	y 'A' given	4 M
	A={11,5,21,3,	_	3 }								
Ans		n is given .		11,5,21	1,3,29,1	7,2,43	} is not	in sorte	ed man	ner, first we need	1M for taking sorted input
	So an array will The binary sear								e searcl	hed is $VAL = 29$.	& 1M each for every iteration
		A[0]	A[1]	A[2]	A[3]	A[4]	A[5]	A[6]	A[7]		
		2	3	5	11	17	21	29	43		
	Iteration 1:										
	BEG = 0, END	0 = 7, MID	0 = (0 +	7)/2 =	3						
	Now, $VAL = 2$	9 and A[N	MID] = 0	A[3] =	11						
	A[3] is less th array.	ıan VAL, t	therefor	e, we i	now sea	arch foi	the va	lue in tl	he seco	nd half of the	
	So, we change	the values	of BEC	G and I	MID.						
	Iteration 2:										
	Now, BEG = N A [5] = 21	MID + 1 =	4, END	0=7, N	MID = 0	(4 + 7)/	2 =11/2	2 = 5; V	VAL = 2	29 and A [MID] =	
	A[5] is less that segment.	n VAL, th	erefore	, we no	ow sear	ch for t	he valu	ie in the	e secon	d half of the	
	So, again we c	hange the	values	of BE	G and N	MID.					
	Iteration 3:										
	Now, BEG = N A [6]=29	MID + 1 =	6, END	0 = 7, N	MID = 0	(6 + 7)/	2 = 6 N	Jow, V	AL = 2	9 and A [MID] =	
I	1										1

d	give adjacency list and adjacency matrix for g	given graph:	4 M
	A B		
Ans	Adjacency List: (Using Linked List)		2M for Correct L
	Here, we use doubly linked list for storing hear respective adjacent node to it.	nder node list and singly linked list for storing	and 2M for Correct matrix
	BINUIL BINUIL BINUIL BINUIL BINUIL BINUIL OR		
	Adjacency List		
	Nodes	Adjacent Nodes	
	A	В	
	A B	B D,E	
	В	D,E	



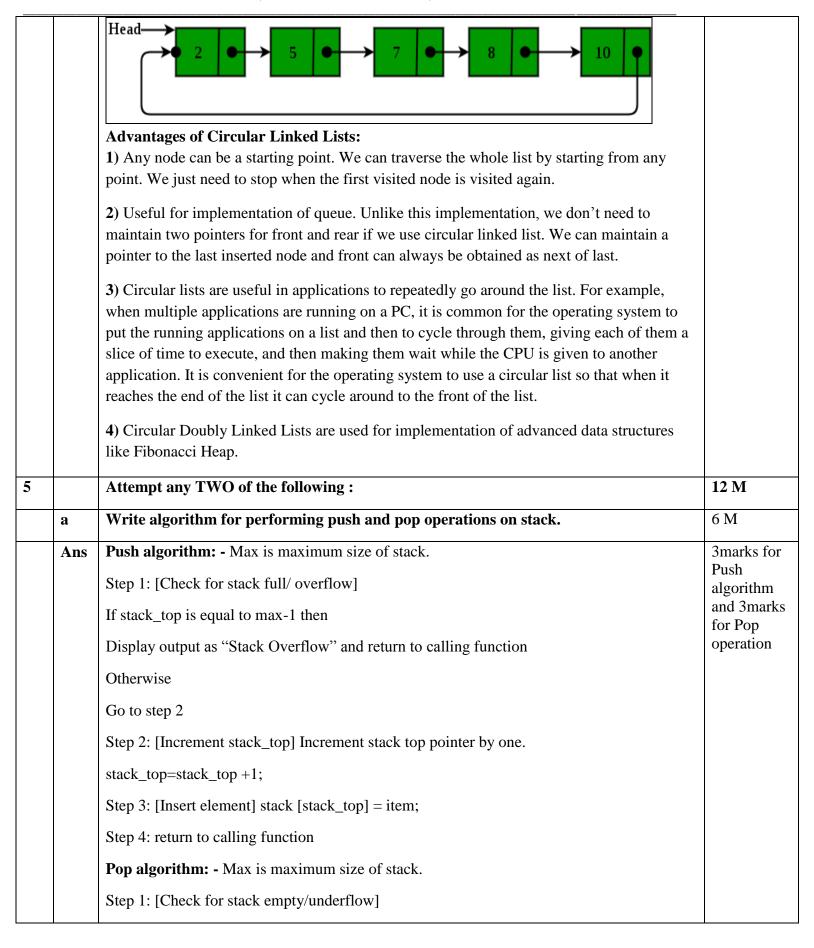
	T		ı			
		Adjacency Matrix: (Using Array)				
		A				
		B 0 0 0 1 1				
		C 1 0 0 0 1				
		D 0 1 0 0 0				
		E 0 0 0 1 0				
1		Attempt any THREE of the following:	12 M			
	a	Describe working of bubble sort with example.	4 M			
	Ans	Bubble sort is a simple sorting algorithm. This sorting algorithm is comparison-based algorithm in which each pair of adjacent elements is compared and the elements are swapped if they are not in order. This algorithm is not suitable for large data sets as its average and worst case complexity is of $O(n^2)$ where \mathbf{n} is the number of items.				
		Bubble Sort Working:				
		We take an unsorted array for our example as A[]= $\{19, 2, 27, 3, 7, 5, 31\}$. Bubble sort takes $O(n^2)$ time so we're keeping it short and precise.				
		{{**Note: Pass 4 onwards optional**}}				
		Pass 1: 2,19,27,3,7,5,31				
		2,19,27,3,7,5,31				
		2,19,27,3,7,5,31				
		2,19,27,3,7,5,31 2,19,3,27,7,5,31				
		2,19,27,3,7,5,31 2,19,3,27,7,5,31 2,19,3,7,27,5,31				
		2,19,27,3,7,5,31 2,19,3,7,27,5,31 2,19,3,7,5,27,31				
		2,19,27,3,7,5,31 2,19,3,27,7,5,31 2,19,3,7,27,5,31 2,19,3,7,5,27,31 Pass 1 Completed				

b	Construct a binary search tree for following elements: 30,100,90,15,2,25,36,72,78,10 show each step of construction of BST.	4 M
-	Pass 6 Completed	425
	Pass 6: 2,3,5,7,19,27,31	
	Pass 5 Completed	
	Pass 5: 2,3,5,7,19,27,31	
	Pass 4 Completed	
	Pass 4: 2,3,5,7,19,27,31	
	Pass 3 Completed	
	2,3,5,7,19,27,31	
	2,3,7,5,19,27,31	
	Pass 3: 2,3,7,5,19,27,31	
	Pass 2 Completed	
	2,3,7,5,19,27,31	
	2,3,7,5,19,27,31	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

```
For example, the function should return 5 for linked list 1->3->1->2->1.
       Algorithm: Using Iterative Solution
       1) Initialize count as 0
       2) Initialize a node pointer, current = head.
       3) Do following while current is not NULL
          a) current = current -> next
          b) count++;
       4) Return count
       Write a program in 'C' to insert an element in a linear queue.
                                                                                                      4 M
d
       // C program to insert an element in a linear queue using array
                                                                                                      4M for
Ans
                                                                                                      correct
       #include<stdio.h>
                                                                                                      logic &
       #include<conio.h>
                                                                                                      program
       #define n 5
                                                                                                      code
       void main()
         int queue[n],ch=1,front=0,rear=0,i,j=1,x=n;
         //clrscr();
         printf("Queue using Array");
         printf("\n1.Insertion \n2.Display \n3.Exit");
         while(ch)
            printf("\nEnter the Choice:");
            scanf("%d",&ch);
            switch(ch)
            case 1:
              if(rear = = x)
                 printf("\n Queue is Full");
              else
                 printf("\n Enter no %d:",j++);
                 scanf("%d",&queue[rear++]);
              break;
            case 2:
              printf("\n Queue Elements are:\n ");
              if(front==rear)
                 printf("\n Queue is Empty");
```

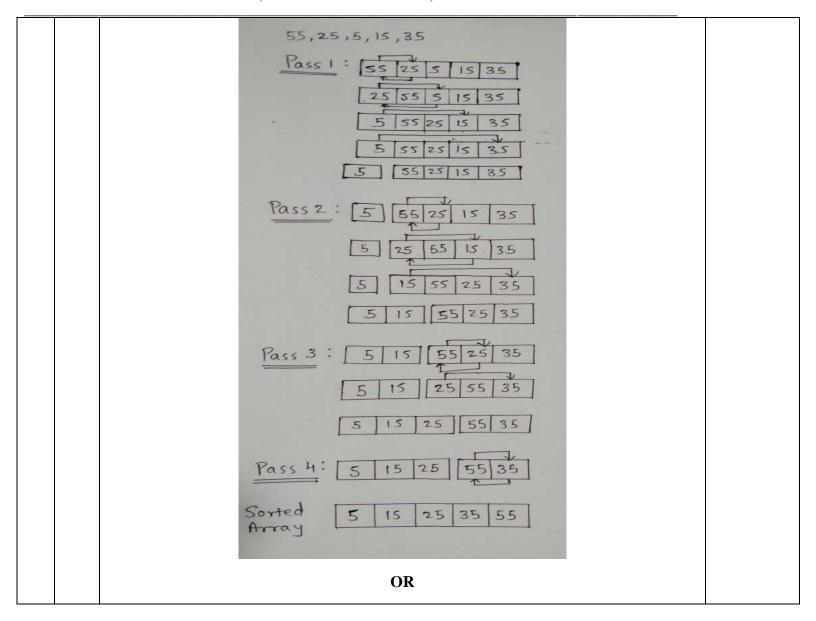


MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

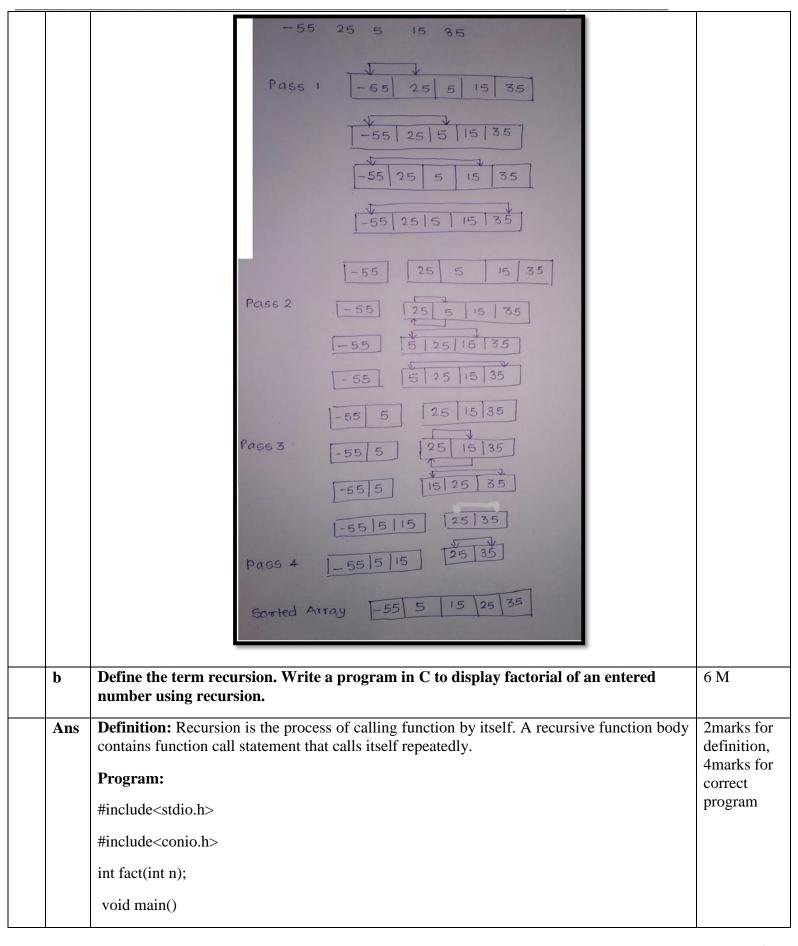
(ISO/IEC - 27001 - 2013 Certified)

```
else
                 for(i=front; i<rear; i++)
                    printf("%d",queue[i]);
                    printf("\n");
                 break;
               case 3:
                 exit(0);
               default:
                 printf("Wrong Choice: please see the options");
         getch();
       Describe circular linked list with suitable diagram. Also state advantage of circular
                                                                                                        4 M
       linked list over linear linked list.
       Circular Linked List
                                                                                                        2M for
Ans
                                                                                                        description
       A circular linked list is a variation of linked list in which the last element is linked to the
                                                                                                        1M for
       first element. This forms a circular loop.
                                                                                                        diagram
                                                                                                        and 1M for
                                                                                                        any one
                                         Data
                                                              Data
                                                 Next
                    Data
                                                                                                        advantage
       A circular linked list can be either singly linked or doubly linked.
               for singly linked list, next pointer of last item points to the first item
              In doubly linked list, prev pointer of first item points to last item as well.
       We declare the structure for the circular linked list in the same way as follows:
       Struct node
       Int data:
       Struct node *next;
       Typedef struct node *Node;
       Node *start = null;
       Node *last = null;
       For example:
```


	If stack_top is equal to -1 then	
	Display output as "Stack Underflow" and return to calling function	
	Otherwise	
	Go to step 2	
	Step 2: [delete element] stack [stack_top] = item;	
	Step 3: [Decrement stack_top] Decrement stack top pointer by one.	
	stack_top=stack_top -1;	
	Step 4: return to calling function.	
b	For given binary tree write in-order, pre-order and post-order traversal.	6 M
	B O O P	
Ans	Inorder Traversal: Q,E,F,R,D,H,B,A,I,J,K,C,L,P	2marks for
	Preorder Traversal: A,B,D,E,Q,F,R,H,C,I,J,K,L,P	each traversal
	Postorder Traversal: Q,R,F,E,H,D,B,K,J,I,P,L,C,A	
c	Write an algorithm to insert an element at the beginning and end of linked list.	6 M
Ans	Algorithm to insert an element at the beginning of linked list:	3marks for
	1. Start	each algorithm
	2. Create the node pointer *temp	
	Struct node * temp	
	3. Allocate address to temp using malloc	
	temp = malloc(sizeof(struct node));	
	4. Check whether temp is null, if null then	
	Display "Overflow"	
	else	

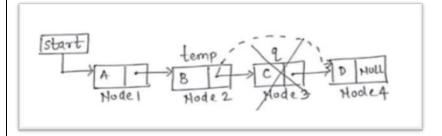


		temp-> info=data	
		temp-> next=start	
		5. Start=temp	
		6. stop	
		Algorithm to insert an element at the end of linked list:	
		1. Start	
		2. Create two node pointers *temp, *q	
		struct node * temp, *q;	
		3. q= start	
		4. Allocate address to temp using malloc	
		temp = malloc(sizeof(struct node));	
		5. Check whether temp is null, if null then	
		Display "Overflow"	
		else	
		temp-> info=data	
		temp-> next=null	
		6. While(q->next!=null)	
		q=q->next	
		7. q->next= temp	
		8. stop	
6		Attempt any TWO of the following:	12 M
	a	Describe working of selection sort method. Also sort given input list in ascending order using selection sort input list:- 55, 25, 5, 15, 35.	6 M
	Ans	Working of Selection sort: Selection Sort algorithm is used to arrange a list of elements in a particular order (Ascending or Descending). In selection sort, the first element in the list is selected and it is compared repeatedly with remaining all the elements in the list. If any element is smaller than the selected element (for ascending order), then both are swapped. Then we select the element at second position in the list and it is compared with remaining all elements in the list. If any element is smaller than the selected element, then both are swapped. This procedure is repeated till the entire list is sorted.	3marks for description, 3marks for correct solution



(Autonomous)

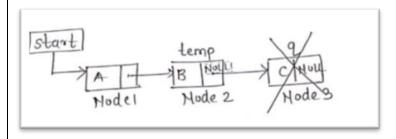
(ISO/IEC - 27001 - 2013 Certified)




```
int n;
       clrscr();
       printf("\nThe factorial of % is = \%d",n,fact(n));
       getch();
       }
       int fact(int n)
       {
       if(n==1)
       return 1;
       else
       return(n*fact(n-1));
       }
       Describe procedure to delete an element from singly linked list using diagram.
                                                                                                     6 M
c
       In a linear linked list, a node can be deleted from the beginning of list, from in between
                                                                                                     **Note:
Ans
       positions and from end of the list.
                                                                                                     Correct
                                                                                                     algorithm
       Delete a node from the beginning:-
                                                                                                     or program
                                                                                                     shall be
                                                                                                     considered.
                                                                                                     Any two
                                                                                                     deletions
                                                                                                     shall be
                                                                                                     considered
                                                                                                     3marks
                                                                                                     each
       Node to be deleted is node1. Create a temporary node as 'temp'. Set 'temp' node with the
       address of first node. Store address of node 2 in header pointer 'start' and then delete 'temp'
       pointer with free function. Deleting temp pointer deletes the first node from the list.
                                                   OR
       Step 1: Create temporary node 'temp'.
       Step 2: Assign address of first node to 'temp' pointer.
       Step 3: Store address of second node (temp->next) in header pointer 'start'.
       Step 4: Free temp.
       Delete a node from in between position:-
```

(Autonomous)

(ISO/IEC - 27001 - 2013 Certified)



Node to be deleted is node3. Create a temporary node as 'temp' and 'q'. Set 'temp' node with the address of first node. Traverse the list up to the previous node of node 3 and mark the next node (node3) as 'q'. Store address from node 'q' into address field of 'temp' node. Then delete 'q' pointer with free function. Deleting 'q' pointer deletes the node 3 from the list.

OR

- Step 1: Create temporary node 'temp', 'q'.
- Step 2: Assign address of first node to 'temp' pointer.
- Step 3: Traverse list up to previous node of node to be deleted.
- Step 4: Mark the node to be deleted 'q'.
- Step 5: Store address from node 'q' in address field of 'temp' node (temp->next=q->next).
- Step 6: Free q.

Delete a node from the end:-

Node to be deleted is node 3. Create a temporary node as 'temp' and 'q'. Set 'temp' node with the address of first node. Traverse the list up to the second last node and mark the last node as 'q'. Store NULL value in address field of 'temp' node and then delete 'q' pointer with free function. Deleting q pointer deletes the last node from the list.

OR

- Step 1: Create temporary node 'temp', 'q'.
- Step 2: Assign address of first node to 'temp' pointer.
- Step 3: Traverse list upto second last node.
- Step 4: Mark last node's address in node 'q'.
- Step 5: store NULL value in address field of second last node (temp->next).
- Step 6: Free q

V2V EDTECH LLP

Online Coaching at an Affordable Price.

OUR SERVICES:

- Diploma in All Branches, All Subjects
- Degree in All Branches, All Subjects
- BSCIT/CS
- Professional Courses
- +91 93260 50669
- **► V2V EdTech LLP**
- w2vedtech.com
- o v2vedtech

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

Winter - 19 EXAMINATION

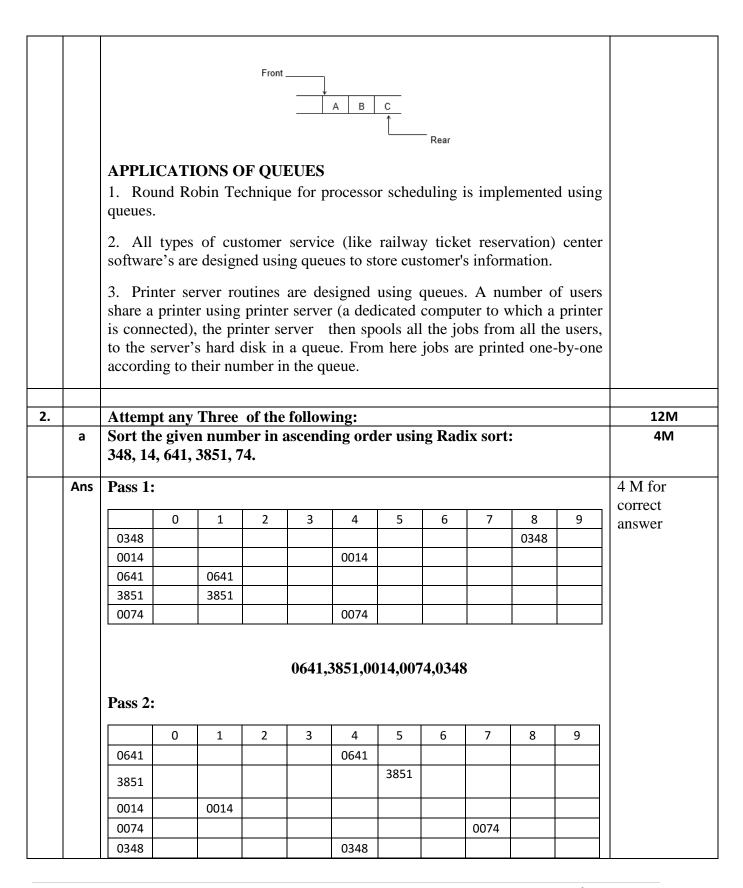
Subject Name: Data Structure Using 'C' Model Answer Subject Code: 22317

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

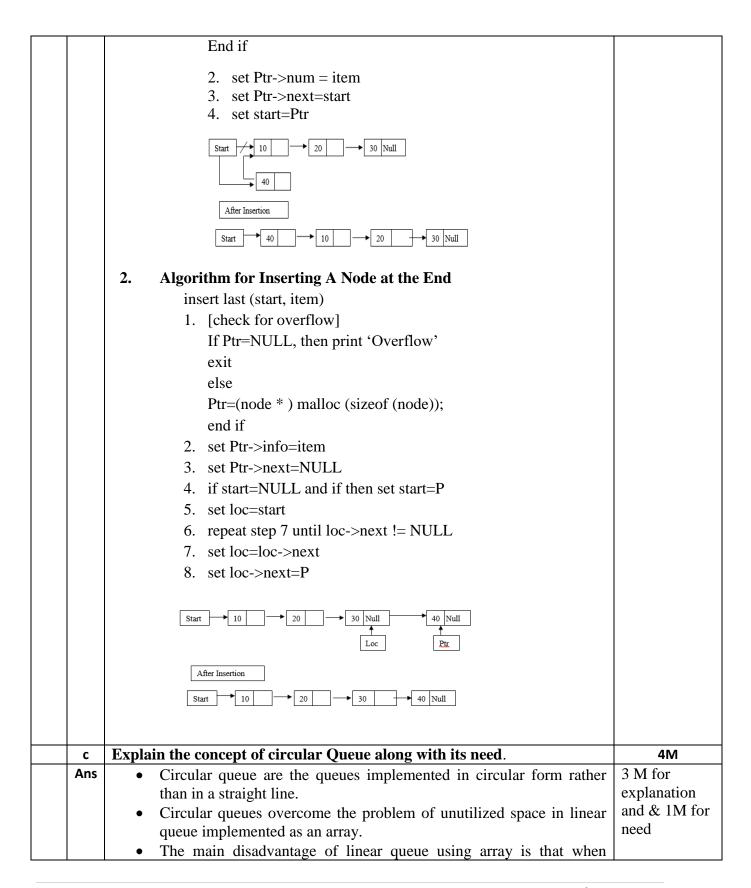
Q.	Sub	Answer	Marking
No.	Q.		Scheme
	N.		
1.		Attempt any Five of the following:	10M
	а	Write any four operations that can be performed on data structure.	2M
	Ans	1. Data structure operations (Non Primitive)	2 M for any 4
		2. Inserting: Adding a new data in the data structure is referred as insertion.	Operation
		3. Deleting: Removing a data from the data structure is referred as deletion.	
		4. Sorting: Arranging the data in some logical order (ascending or descending, numerically or alphabetically).	
		5. Searching: Finding the location of data within the data structure which satisfy the searching condition.	
		6. Traversing: Accessing each data exactly once in the data structure so that each data item is traversed or visited.	
		7. Merging: Combining the data of two different sorted files into a single sorted file.	
		8. Copying: Copying the contents of one data structure to another.	
		9. Concatenation: Combining the data from two or more data structure.OR	

	Data structure operations (Primitive)	
	1. Creation: To create new Data Structure	
	2. Destroy: To delete Data Structure	
	3. Selection: To access (select) data from the data structure	
	4. Updating: To edit or change the data within the data structure.	
b	Define the term overflow and underflow with respect to stack.	2M
Ans	Stack overflow: When a stack is full and push operation is performed to	1 M for stack
	insert a new element, stack is said to be in overflow state.	overflow
	Max = 4 $Max = 4$	and 1M for
		stack underflow
	3 D Kstarktop 3 D K stacktop	undernow
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	O A O A	
	Stack Full Push E	
	Stack Overflow State.	
	Stack underflow: When there is no element in a stack (stack empty) and	
	pop operation is called then stack is said to underflow state.	
	Max = 4 $Max = 4$	
	3	
	2	
	Stack Emply. Stack underflow state.	
	Stack Emply.	
	Stack under How state:	
		224
C	Define the following term w.r.t. tree: (i) In-degree (ii) out-degree.	2M 1 M for each
Ans	In -degree: Number of edges coming towards node is in-degree of node.	
	For e.g.: In degree of node B is 1	correct definition
		definition
	Out -degree: Number of edges going out from node is out -degree of node.	
	For e.g. Out Degree of is node D is 2	



	_			
	Н		1	F G
d	valuate the following otation: P: 4, 2, ^, 3,	arith: *,3,-,8	metic expr 3,4 ,/,+	ession P wr
Ans		Sr. No.	Symbol Scanner	STACK
		1	4	4
		2	2	4, 2
		3	۸	16
		4	3	16, 3
		5	*	48
		6	3	48,3
		7	-	45
		8	8	45,8
		9	4	45,8,4
	i i			
		10	/	45,2

е	Describe directed and undirected graph.	2M
Ans	Direct Graph: A directed graph is defined as the set of ordered pair of vertices and edges where each connected edge has assigned a direction.	1M for each definition with diagram
	V1 $V3$ $V3$ $V4$	
	Undirected Graph: An undirected graph G is a graph in which each edge e is not assigned a direction.	
f	Give classification of data structure.	2M
Ans	Data Structure Non-Primitive Data Structure Integer Float Character Pointer Linear Lists Non-Linear Lists Stacks Queues Graphs Trees	2 M for diagram
g	Define queue. State any two applications where queue is used.	2M
Ans	A Queue is an ordered collection of items. It has two ends, front and rear. Front end is used to delete element from queue. Rear end is used to insert an element in queue. Queue has two ends; the element entered first in the queue is removed first from the queue. So it is called as FIFO list.	1M for definition, 1M for applications (any two)



				00	14,0641	1,0348,	3851,0	074				
	Pass 3	1		1	1	T	T		.	T		
		0	1	2	3	4	5	6	7	8	9	
	0014	0014										
	0641				0240			0641				
	0348 3851				0348					3851		
	0074	0074								3631		
	0074	0074										
					0014,0	0074,03	348,064	41,3851				
	Pass 4	•										
		0	1	2	3	4	5	6	7	8	9	
	0014	0014										
	0074	0074										
	0348	0348										
	0641	0641										
	3851					3851						
b		an algo linked	rithm					8, 641, e begin		nd end	of the	4M
Ans	1. Alg	gorithn	ı for iı	isertin	g a nod	le at th	e begiı	nning				2M for
			Insert	first(st	tart, itei	n)						Algorithm for inserting a
			1. [c		ne overf ≔NULI		orint 'C	verflov	v'			node at the beginning 2M for
				exit								Algorithm for Inserting A
				else	(1 de)	. 11	, •	C / 1				Node at the End
				Ptr=(node *)	mallo	c (size	of (node	e))			
			//crea	te new	node fr	om me	morv a	nd assis	on its a	address	to ptr	

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

elements are deleted from the queue, new elements cannot be added in their place in the queue, i.e. the position cannot be reused. After rear reaches the last position, i.e. MAX-1 in order to reuse the vacant positions, we can bring rear back to the 0th position, if it is empty, and continue incrementing rear in same manner as earlier. Thus rear will have to be incremented circularly. For deletion, front will also have to be incremented circularly. Rear can be incremented circularly by the following code. If ((rear == MAX-1) and (front !=0) Rear =0; Else Rear= rear +1; Example: Assuming that the queue contains three elements. Now we insert an element F at the beginning by bringing rear to the first position in the queue, this can be represented circularly as shown. Front 10 20 30 50 40 3 **Need of Circular Queue:** Circular queues overcome the problem of unutilized space in linear queue implemented as an array. The element can be stored efficiently in an array so as to wrap around so that the end of queue is followed by front of the queue. Draw a binary search tree for the given number. 50, 33, 44, 22, 77, 35, 4M 60, 40. 4 M for Ans correct answer

			33 44	77		
3.		Attempt any Three of the follo	12M			
J.	а	Explain time and space comple		th an examnle		4M
	Ans	Time Complexity: Time complex computer time that it needs complexity of an algorithm we count for key statements. Example: #include <stdio.h> void main () { int i, n, sum, x; sum=0; printf("\n Enter no of scanf("% d", &n); for(i=0; i<n; i++)<="" td=""><td>2M for Time Complexity and 2M for space complexity</td></n;></stdio.h>	2M for Time Complexity and 2M for space complexity			
		Statement		Computational Time		
		sum=0	1 y	t ₁	-	
		printf("\n Enter no of data to be added")	1	t ₂	-	
		scanf("% d", &n)	1	t ₃		
		for(i=0; i <n; i++)<="" th=""><th>n+1</th><th>(n+1)t₄</th><th></th><th></th></n;>	n+1	(n+1)t ₄		
		scanf("%d", &x)	n	nt ₅		
		sum=sum+x	n	nt ₆	_	
		<u>printf("\n Sum = %d ", sum)</u>	1	t ₇		
		Total computational ting $T = n(t4+t5+t6)+ (t1+t6)$ For large n , T can be $T = n(t4+t5+t6) = kn$ where $T = kn$ or	t2+t3+t4 approx	4+t7) imated to	+nt6+nt5+t7	

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

Space Complexity: Total amount of computer memory required by an algorithm to complete its execution is called as space complexity of that algorithm. When a program is under execution it uses the computer memory for THREE reasons. They are as follows...

- Instruction Space: It is the amount of memory used to store compiled version of instructions.
- Environmental Stack: It is the amount of memory used to store information of partially executed functions at the time of function call.
- Data Space: It is the amount of memory used to store all the variables and constants.

If the amount of space required by an algorithm is increased with the increase of input value, then that space complexity is said to be Linear Space Complexity.

Example:

```
int sum(int A[], int n) 
 { 
  int sum = 0, i; 
  for(i = 0; i < n; i++) 
    sum = sum + A[i]; 
  return sum;}
```

In the above piece of code it requires

'n*2' bytes of memory to store array variable 'a[]'

2 bytes of memory for integer parameter 'n'

4 bytes of memory for local integer variables 'sum' and 'i' (2 bytes each)

2 bytes of memory for return value.

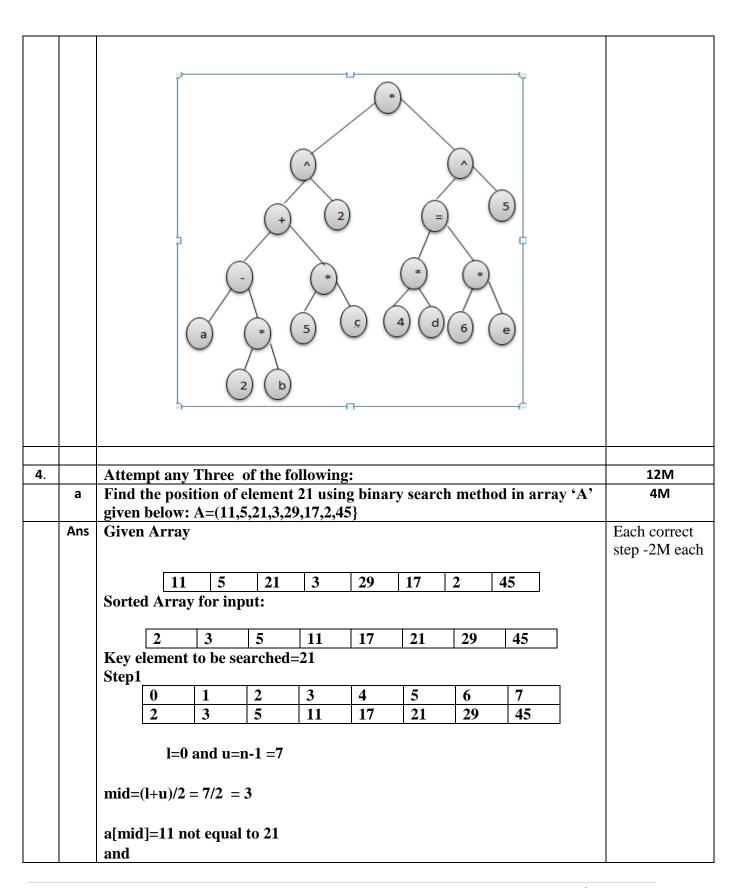
That means, totally it requires '2n+8' bytes of memory to complete its execution. Here, the total amount of memory required depends on the value of 'n'. As 'n' value increases the space required also increases proportionately. This type of space complexity is said to be **Linear Space Complexity**.

OR

Time complexity:- Time complexity of a program/algorithm is the amount of computer time that it needs to run to completion. While calculating time complexity, we develop frequency count for all key statements which are important and basic instructions of an algorithm.

Example: Consider three algorithms given below:-

	Algorithm A: - a=a+1 Algorithm B: - for x = 1 to n step 1 a=a+1 Loop Algorithm C:- for x=1 to n step 1 for y=1 to n step 1 a=a+1	
	Loop Frequency count for algorithm A is 1 as a=a+1 statement will execute only once. Frequency count for algorithm B is n as a=a+1 is key statement executes n time as the loop runs n times.	
	Frequency count for algorithm C is n as a=a+1 is key statement executes n2 time as the inner loop runs n times, each time the outer loop runs and the outer loop also runs for n times.	
	Space complexity :- Space complexity of a program/algorithm is the amount of memory that it needs to run to completion. The space needed by the program is the sum of the following components:-	
	Fixed space requirements : - It includes space for instructions, for simple variables, fixed size structured variables and constants.	
	Variable time requirements : - It consists of space needed by structured variables whose size depends on particular instance of variables. Example: - additional space required when function uses recursion.	
b	Convert the following infix expression to postfix expression using stack and show the details of stack in each step.((A+B)*D)^(E-F)	4M
Ans	infix expression: ((((A+B)*D)^(E-F))	Correct answer-4M



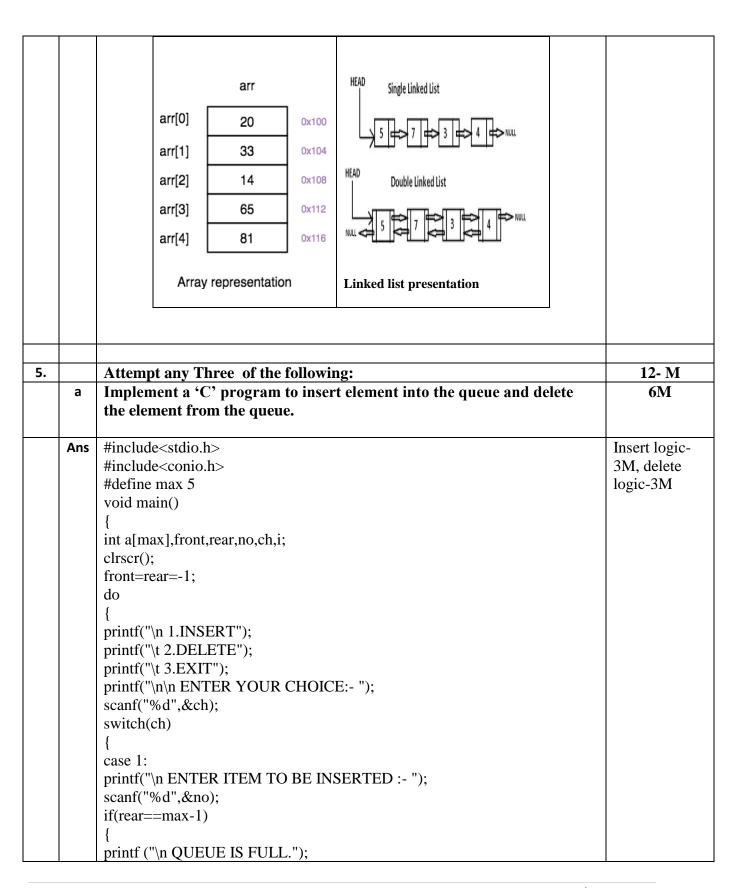
	Current Symbol	Operator Stack	Postfix array	
	((Empty	
	(((Empty	
	((((Empty	
	A	(((A	
	+	(((+	A	
	В	(((+	AB	
)	((AB+	
	*	((*	AB+	
	D	((*	AB+D	
)	(AB+D*	
	٨	(^	AB+D*	
	((^(AB+D*	
	Е	(^(AB+D*E	
	-	(^(-	AB+D*E	
	F	(^(-	AB+D*EF	
)	(^	AB+D*EF-	
)	EMPTY STACK	AB+D*EF-^	
	Postfix expression	1		
	nent a 'C' program to Ising Linear Search.	o search a particu	lar data from the given	4N
Ans Progra				

	# include <stdio.h></stdio.h>	2M for locio
		2M for logic
	#include <conio.h></conio.h>	And 2 M for
	void main ()	syntax
	{	
	int a[10], n, key,i,c=0;	
	clrscr();	
	printf ("Enter number of array elements\n");	
	scanf ("%d", &n);	
	printf ("Enter array elements\n");	
	for (i=0; i< n; i++)	
	scanf ("%d", &a[i]);	
	prinntf ("Enter key value\n");	
	scanf ("%d", &key);	
	for(i=0;i< n-1;i++)	
	[
	l l	
	if (Irov. — a[i])	
	if (key == a[i])	
	{	
	c=1;	
	printf ("%d is found at location %d\n", key, i+1);	
	break;	
	}	
	J	
	}	
	if (c==0)	
	printf ("%d not present in the list\n",key);	
	getch();	
	}	
d	Draw an expression tree for the following expression:	4M
"	$(a-2b+5e)^2 * (4d=6e)^5$.	7171
	(a-20+3e) * (4u=0e) .	C
Ans		Correct
		Expression
		tree-4M
	1	

	21 > 11	l=mid+1 = 4	4 and 1	u = 7			
	Step 2:			Г -			
		4 5		6	7		
		17 21		29	45		
	l=4 and u ='	7					
	mid= 11/2 =						
	a[mid]=21 e	equal to key elemen	t 21				
	therefore ke	ey element 21 is fou	ınt un	array at	position 6		
b	Difference k	oetween tree and gr	raph(A	Any 4 poi	nts)		4M
Ans					7 7		Any correct
		Tree			Fraph		points- 4M
		Tree is special forr			ere can be		
		of graph i.e. minimally connect		nore than raph can	one path i.e.		
		graph and having		irectional			
		only one path			paths (edges)	
		between any two vertices.		etween no	-		
		Tree is a special ca			have loops,		
		of graph having no	_		well as can		
		loops, no circuits a	ınd h	ave self-l	oops.		
		no self-loops. Tree traversal is a		Franh is tr	aversed by		
		kind of special case		-	th First Search	n	
		of traversal of grap		-	S: Breadth		
		Tree is traversed in		irst Searc	h algorithm		
		Pre-Order, In-Order and Post-Order	er				
		Different types of			nainly two	_]	
		trees are: Binary		•	raphs: Directe	ed	
		Tree, Binary Searc	h a	nd Undire	ected graphs.		
		Tree, AVL tree,					

С	Treed m	Graph applications: Coloring of maps, in OR (PERT & CPM), algorithms, Graph coloring, job scheduling, etc. Tee always has n-1 lges. Tee is a hierarchical odel. Tally linked list using data fields 21 25 96 58 74 and sho	w 4M
Ans	procedure step	-by-step with the help of diagram start to end.	correct
			construction
			3M and
	Step1:	Initially linked is empty Start=NULL	explaination 1M
		Insert node 21	1141
		Start	
		21 NULL	
		insert node 25	
	Start tra	versing linked list from start till last node of linked list and then add a new node	
		Start	
		21 25 NULL	
	Step3:	Insert node 96	
		Start	
		21 25 96 NULL	
	Step 4:	Insert node 58	
		Start	
		21 25 96 58 NULL	
	Step 5:	nsert node 74	
		Start	
		21 25 96 58 74 NULL	

	POP PUSH(30)				
Ans	Initial Stack empty				Each correct
		stack[9]			step-1M
		stack[8]			
		stack[7]			
		stack[6]			
		stack[5]			
		stack[4]			
		stack[3]			
		stack[2]			
		stack[1]			
	0. 4	stack[0]	top= -1		
	Step 1:	DLICII(O)			
		PUSH(0) top=top+1		stack[0]=10	
		stack[9]		Stack[0]-10	
		stack[8]			
		stack[7]			
		stack[6]			
		stack[5]			
		stack[4]			
		stack[3]			
		stack[2]			
		stack[1]			
	10	stack[0]	top=0		
	Step 2:				
		PUSH(0)			
		top=top+1		stack[1]=20	
		stack[9]			
		stack[8]			
		stack[7]			
		stack[6]			
		stack[5]			
		stack[4]			
		stack[3] stack[2]			
	20		top=1		
	10		10p 1		
	Step 3:				
	эteр э.	POP			



			top=top		20 is deleted		
			stack[9				
			stack[8				
			stack[7				
			stack[6				
			stack[5				
			stack[4				
			stack[3				
			stack[2				
		- 10	stack[1				
		10	stack[0] top=0			
		C 1 4					
		Step 4:	PUSH(C))			
			top=top		stack[1]=30		
			stack[9]			
			stack[8]			
			stack[7]			
			stack[6]			
			stack[5]			
			stack[4]			
			stack[3]			
			stack[2]			
		30	stack[1	-			
		10	stack[0]			
е	Compa	re Linked List and	Array (any 4 point	s).		4M
Ans		_		T		1	1M for each
		Linked List			Array		valid difference
		Array is a collection			t is an ordered		
		elements of similar	data		of elements of same		
		type.			n are connected to		
					using pointers.		
		Array supports Ran	dom	Linked Lis	t		
		Access, which mean	ıs	supports So	equential Access,		
		elements can be acc	essed	which mea	ns to access any		
		directly using their	index,	element/no	de in a linked list;		
		like arr[0] for 1st	•	we have to	sequentially		
		element, arr[6] for 7	7th		e complete linked		
		element etc.			hat element.		
		Ciomoni Cio.		1150, up 10 t	nat oromont.		
	1	t end of the second of the sec					1

<u> </u>			
	Hence, accessing	To access nth element of a	
	elements in an array	linked list, time complexity	
	is fast with a constant	is O (n).	
	time complexity of O (1).		
	In array, Insertion and	In case of linked list, a new	
	Deletion operation takes	element is stored at the first	
	more time, as the memory	free and available memory	
	locations are consecutive	location, with only a single	
	and fixed.	overhead step of storing the	
		address of memory location in	
		the previous node of linked	
		list. Insertion and Deletion	
		operations are fast in linked	
		list.	
	Memory is allocated as	Memory is allocated	
	soon as the array is	at runtime, as and when a new	
	declared, at compile time.	node is added. It's also known	
	It's also known as Static	as Dynamic Memory	
	Memory Allocation.	Allocation.	
	In array, each element is	In case of a linked list, each	
	independent and can be	node/element points to the	
	accessed using it's index	next, previous, or maybe both	
	value	nodes.	
	Array can single	Linked list can be Linear	
	dimensional, two	(Singly), Doubly or Circular li	
	dimensional or multidime	nked list.	
	nsional	inco iist.	
	Size of the array must be	Size of a Linked list is	
	specified at time of array	variable. It grows at runtime,	
	declaration.	as more nodes are added to it.	
		as more nodes are added to it.	
	Array gets memory	Whereas, linked list gets	
	allocated in	memory allocated	
	the Stack section	I -	
	in State Section	in Heap section.	


```
break;
    }
    rear=rear+1;
    a[rear]=no;
    if(front==-1)
    front=0;
    break:
    case 2:
    if(front==-1)
    printf ("\n QUEUE IS EMPTY.");
    break;
    no=a[front];
    printf("\n DELETED ELEMENT IS:- %d",no);
    if(front==rear)
    front=rear=-1;
    else
    front=front+1;
    break;
    case 3:
    exit(0);
    printf("\n\n DO YOU WANT TO CONTINUE:(1 FOR YES/2 FOR NO):-");
    scanf("%d",&ch);
    }while(ch==1);
    getch();
b
    Consider the graph given in following figure and answer given
                                                                                   6M
    questions.
    1)All simple path from 1 to 5
    2)In-degree of and out-degree of 4
    3) Give Adjacency matrix for the given graph.
    4) Give Adjacency list representation of the given graph.
```


(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

Ans i) Nodes: 1-2-5

ii) Nodes: 1-3-2-5

2)

In degree of node 4-1, Out degree of node 4-0

3)Correct adjacency matrix:

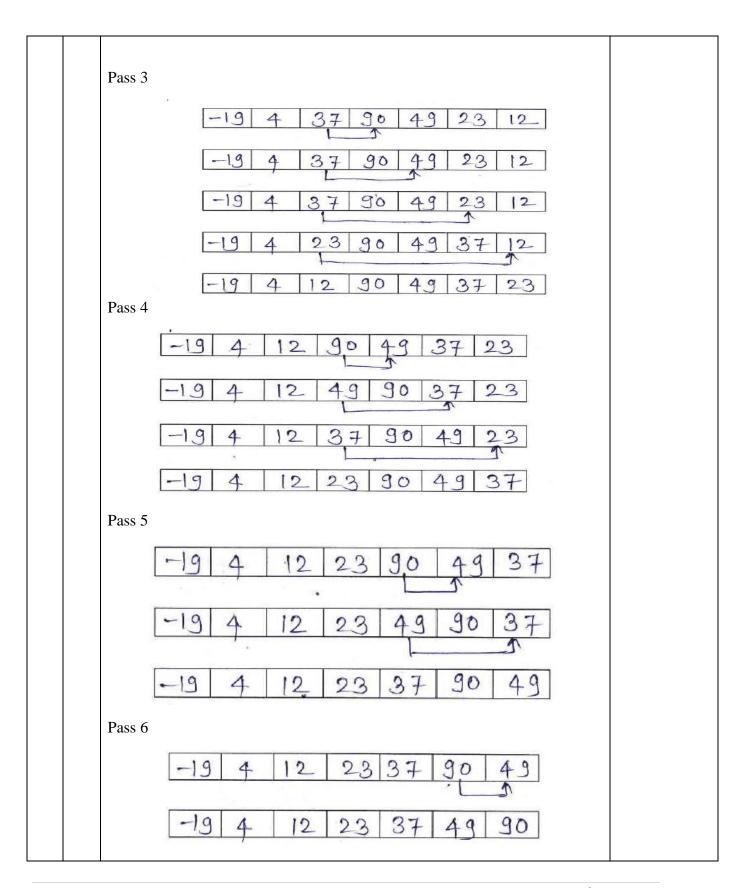
$$A = \begin{bmatrix} 2 & 3 & 4 & 5 \\ 1 & 0 & 1 & 1 & 0 & 0 \\ 2 & 0 & 0 & 0 & 0 & 1 \\ 3 & 0 & 1 & 0 & 1 & 0 \\ 4 & 0 & 0 & 0 & 0 & 0 \\ 5 & 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$

4) Adjacency list representation

Node	Adjacent nodes
1	2,3
2	5
3	2,4
4	NIL
5	3

Simple path: Each path ½
M
Each degree
½ M

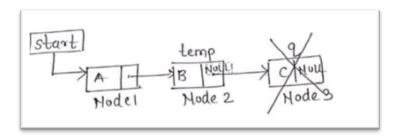
Correct adjacency matrix: 2M Adjacency list representation -2M



	C Ans	Representation: The property of the propert	6M Correct steps
		4 Noul	
			6M
		Node contains two fields: info and next pointer	of algorithm- 6M
		start pointer: Header node that stores address of first node	
		step 1: start step 2: Declare variable no, flag and pointer temp step 3: Input search element step 4: Initialize pointer temp with the address from start pointer.(temp=start), flag with 0 step 5: Repeat step 6 till temp != NULL step 6: compare: temp->info = no then	
6.		Attempt any Three of the following:	12M
	а	Elaborate the steps for performing selection sort for given elements of array. A={37,12,4,90,49,23,-19}	6M

Ans		Correct steps:
	Pass 1	each pass-1M
	37 12 4 90 49 23 -19	
	12 37 4 90 49 23 -19	
	4 37 12 90 49 23 -19	
	4 37 12 90 49 23 -19	
	4 37 12 90 49 23 -19	
	4 37 12 90 49 23 -19	
	-19 37 12 90 49 23 4	
	Pass 2	
	-19 37 12 90 49 23 4	
	-19 12 37 90 49 23 4	
	-19 12 37 90 49 23 4	
	-19 12 37 90 49 23 4	
	1	
	19 12 37 90 49 23 4	
	-19 4 37 90 49 23 12	

b	Explain the con	cept of r	ecursion	us	sing stac	ck.				6M
Ans	Recursion is a process of calling a function by itself. a recursive function body contains a function call statement that calls itself repetitively. Recursion is an application of stack. When a recursive function calls itself from body, stack is used to store temporary data handled by the function in every iteration.									
	Example:									
	function call from	m main()	: fact(n);	//	conside	r n=5				
	Function definition	ion:								
	<pre>int fact(int n) {</pre>									
	if(n==1)									
	return 1; else									
	return(n*fact(n-	1));								
	}			c	٠.	11 C 4	(1)	1		
	In the above rec									
	its current status									
	function is called								. ,	
	inside function	body exe	ecutes a	re	cursive	function	call. I	n this ca	ll, first	
	value of n is sto	red using	push ()	op	peration	in stack	(n=5)	and a fund	ction is	
	called again with						-			
	and then it is re	-			_					
	function is called with n=1, recursive process stops. At the end all values									
	from stack are) opera	ition to p	erform	
	multiplication to	calculate	e factoria	l O	f numbe	er.				
	f(1) true return 1;	POP								
	f(2) false return 2*f(1)	fi(2) false seturn 2*1	POP							
	f(3) false	f(3) fallse	f(3) false	-	POP					
	return 3*f(2) f(4)	return 3*f(2) f(4)	return 3*2 f(4)		f(4)	POP		-		
	false return 4*f(3)	false return 4*f(3)	false return 4*f(3)		false return 4*6					
	f(5) # line 1 false return 5*f(4)	f(5) // line 1 false return 5*f(4)	f(5) # line 1 false return 5*f(4)		f(5) // line 1 false return 5*f(4)	f(5) # line 1 false return 5*24	POP			
		main()	main()	ı	main()	main()	main()	POP		



	recursive call execution. Next columns shows result of pop operation for	
	calculating factorial.	
С	Show with suitable diagrams how to delete a node from singly linked list at the beginning, in between and at the end of the list.	6M
Ans	In a linear linked list, a node can be deleted from the beginning of list, from in between positions and from end of the list. Delete a node from the beginning:-	Diagram for beginning- 2M, end-2M, inbetween-2M
	Nodel Hode 2 Hode 3	
	Node to be deleted is node1. Create a temporary node as 'temp'. Set 'temp' node with the address of first node. Store address of node 2 in header pointer 'start' and then delete 'temp' pointer with free function. Deleting temp pointer deletes the first node from the list. Delete a node from in between position:-	
	Start Themp, 9 Node 1 Hode 2 Hode 3 Hode 4	
	Node to be deleted is node3. Create a temporary node as 'temp' and 'q'. Set 'temp' node with the address of first node. Traverse the list up to the previous node of node 3 and mark the next node (node3) as 'q'. Store address from node 'q' into address field of 'temp' node. Then delete 'q' pointer with free function. Deleting 'q' pointer deletes the node 3 from the list.	

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

Delete a node from the end:-

Node to be deleted is node 3.Create a temporary node as 'temp' and 'q'. Set 'temp' node with the address of first node. Traverse the list up to the second last node and mark the last node as 'q'. Store NULL value in address field of 'temp' node and then delete 'q' pointer with free function. Deleting q pointer deletes the last node from the list.

V2V EDTECH LLP

Online Coaching at an Affordable Price.

OUR SERVICES:

- Diploma in All Branches, All Subjects
- Degree in All Branches, All Subjects
- BSCIT/CS
- Professional Courses
- +91 93260 50669
- **► V2V EdTech LLP**
- w2vedtech.com
- o v2vedtech

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

Subject: Data Structure Using 'C'

Subject Code: 22317

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills).
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.	Sub	Answer	Marking Scheme
No	Q.N.		Scheme
1.		Attempt any FIVE of the following:	10
••	(a)	List any four operations on data structure.	2M
	Ans.	Operations on data structure:	
		• Insertion	Any
		Deletion	four
		Searching	operatio
		Sorting	$ns^{1/2}M$
		Traversing	each
		• Merging	
	(b)	Enlist queue operation condition.	2M
	Ans.		
		1. Queue Full	Two
		2. Queue Empty	operatio
			nal
			conditio
			ns 1M
			each

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

(c)	Define:	2M
Ans.	 (i) Binary tree (ii) Binary search tree (i) Binary tree: It is a nonlinear data structure in which each non-leaf node can have maximum two child nodes as left child ad right child. (ii)Binary search tree: It is a nonlinear data structure in which left child of root node is less than root and right child of root node is greater than root. 	Each correct definitio n 1M
(d)	Show the memory representation of stack using array with the	2M
Ans.	help of a diagram. Consider stack contains five integer elements represented with an array A in which each element occupy 2 bytes memory. Array starts with base address of 2000. Index position A[4] A[3] A[2] A[1] A[0] A[0] Stack	Correct represen tation 2M
(e)	Define given two types of graph and give example. (i) Direct graph (ii) Undirected graph	2M
Ans.	(i) Direct graph: (ii) Chairected graph: (i) Direct graph: A graph in which direction is associated with each edge is known as directed graph. Example:	
	Node Edge A B C	Definitio n with example of each1M

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

(6)	(ii) Undirected graph: A graph in which the edges do not have any direction associated with them is known as undirected graph. Example:- Node Edge D C	
(f)	Differentiate between linear and non-linear data structures on any two parameters.	2M
Ans.	Sr. Linear data structure Non-linear data structure	
	1 A data structure in which all data elements are stored in a sequence is known as linear data structure. 2 All elements are stored in contiguous memory locations inside memory. 3 Example:- stack, queue A data structure in which all data elements are not stored in a sequence is known as non-linear data structure. All elements may stored in non-contiguous memory locations inside memory. Example:- tree, graph	Any two differen ces 1M each
(g) Ans.	Convert the following infix expression to its prefix form using stack A + B - C * D/E + F	2M

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

		4.					
		Infix Expression	Read Character	Stack contents	Prefix Expression		
		A+B-C*D/E+F	F		F		
		A+B-C*D/E+	+	+	F		
		A+B-C*D/E	Е	+	EF		
		A+B-C*D/	/	/ +	EF		
		A+B-C*D	D	/	DEF		Correct prefix expressi
		A+B-C*	*	*	/DEF		on2M
		A+B-C	С	* +	C/DEF		
		A+B-	-	-	+*C/DEF		
		A+B	В	-	B+*C/DEF		
		A+	+	+	-B+*C/DEF		
		A	A	+	A-B+*C/DEF		
					+ A-B+*C/DEF		
2.		Attempt any TI	HREE of the	following:			12
	(a)	Explain the wor		_	n an example.		4M
	Ans.				ray. Search method	d starts	
	11104				ay and compare the		
					a match is found t		
					list into 2 parts. Fi		
		-		-	tion element and	-	Explana
					aid position elemen		tion 2M
					element is less or		uon 2111
			• •	•		_	
					nid position for so		
					with search elemen		
					vision task the eler	nent is	
		found or division	_		_		
		To calculate mid	-				
		lower-lower inde					
		upper-upper inde	ex position of	an array(ınıtıa	IIy size-I)		

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

	Example: Consider Input list 0, 1, 2, 9, 10, 11, 15, 20, 46, 72 Search element: 11 \rightarrow Iteration 1 Lower = 0 Upper = 9mid = (lower + upper) / 2= (0 + 9/2)= 4.5 Index Position												
	0	1	2	3	4	5	6	7	8	9		Example 2M	
	0	1	2	3	10	11	15	20	46	72			
		mid! = 11 mid≲SE; Lower = mid + 1											
	→ Iterat Lower =												
	5 11												
		mi mi	 d!=11 d>SE:up	oer = mid	-1								
	→ Iterat Lower =		per = 6	mid = (L	ower + Uj	pper) / 2=	(5+6)/	2= 5.5					
	5 11 mid = 15	6 15		idex osition									
	Number	is found											
(b)	Write a (Note: ci											4M	
Ans.	#include			a aaaa	noug u	c opi	ui)					Correct	
	#include											logic 2M	
	#include	<maile< th=""><th>oc.n></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></maile<>	oc.n>										
	void crea											Correct	
	void add	_	int);									syntax	
	void disp struct no											<i>2M</i>	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

```
int info;
struct node *next;
}*start=NULL;
void main()
int m;
clrscr();
printf("enter data value\n");
scanf("%d",&m);
create_list(m);
printf("enter data value\n");
scanf("%d",&m);
addatbeg(m);
 display();
getch();
void create_list(int data)
struct node *tmp,*q;
tmp=malloc(sizeof(struct node));
tmp->info=data;
tmp->next=NULL;
start=tmp;
void addatbeg(int data)
struct node *tmp;
tmp=malloc(sizeof(struct node));
tmp->info=data;
tmp->next=start;
start=tmp;
void display()
```


(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

	<pre>struct node *q; if(start==NULL) { printf("list is empty\n"); } q=start; printf("list is:\n"); while(q!=NULL) { printf("%d\t",q->info); q=q->next; }</pre>	
)	43.7
(c) Ans.	Draw and explain construction of circular queue. A queue, in which the last node is connected back to the first node to form a cycle, is called as circular queue.	4M
	7 0 Front 6 20 1 5 30 2 Rear	Draw 1M
	The above diagram represents a circular queue using array. It has rear pointer to insert an element and front pointer to delete an element. It works in FIFO manner where first inserted element is deleted first. Initially front and rear both are initialized to -1 to represent queue empty. First element inserted in circular queue is stored at 0 th index position pointed by rear pointer. For the very first element, front pointer is also set to 0 th position. Whenever a new element is inserted in a queue rear pointer is incremented by one. If rear is pointing to max-1 and no element is present at 0 th position then rear is set to 0 th position to continue cycle. Before inserting an element, queue full condition is checked. If rear is set to max-1 position and front is set to 0 then queue is full. Otherwise if rear =front+1 then also queue is full.	Explana tion 3M

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

	1
If queue is full then new element cannot be added in a queue. For deletion, front pointer position is checked and queue empty condition is checked. If front pointer is pointing to -1 then queue is empty and deletion operation cannot be performed. If queue contains any element then front pointer is incremented by one to remove an element. If front pointer is pointing to max-1 and element is present at 0 th position then front pointer is initialize to 0 th position to continue cycle. Circular queue has advantage of utilization of space. Circular queue is full only when there is no empty position in a queue. Before inserting an element in circular queue front and rear both the pointers are checked. So if it indicates any empty space anywhere in a queue then insertion takes place.	
	4M
Indegree of node: It is number of edges coming towards a specified node i.e. number of edges that have that specified node as the head is known as indegree of a node. Outdegree of node: It is number of edged going out from a specified node i.e. number of edges that have that specified node as the tail is known as outdegree of a node In undirected graph each edge is bidirectional so each edge coming towards node is also going out of that node. Due to this indegree and outdegree of a node is same number. In indirected graph, each edge is having direction associated with it, so indegree and outdegree depends on the direction.	Each term- explanat ion 1M
Evample	
Indegree of node A= 1 Outdegree of node A=2	Each example 1M
	For deletion, front pointer position is checked and queue empty condition is checked. If front pointer is pointing to -1 then queue is empty and deletion operation cannot be performed. If queue contains any element then front pointer is incremented by one to remove an element. If front pointer is pointing to max-1 and element is present at 0 th position then front pointer is initialize to 0 th position to continue cycle. Circular queue has advantage of utilization of space. Circular queue is full only when there is no empty position in a queue. Before inserting an element in circular queue front and rear both the pointers are checked. So if it indicates any empty space anywhere in a queue then insertion takes place. Explain indegree and outdegree of a graph with example. Indegree of node: It is number of edges coming towards a specified node i.e. number of edges that have that specified node as the head is known as indegree of a node. Outdegree of node: It is number of edged going out from a specified node i.e. number of edges that have that specified node as the tail is known as outdegree of a node In undirected graph each edge is bidirectional so each edge coming towards node is also going out of that node. Due to this indegree and outdegree of a node is same number. In indirected graph, each edge is having direction associated with it, so indegree and outdegree depends on the direction. Example:-

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

		Indegree of node B= 3 Outdegree of node B=2	
		Indegree of node C= 2 Outdegree of node C=1	
		Indegree of node D= 1 Outdegree of node D=3	
		Indegree of node E= 2 Outdegree of node E=1	
3.		Attempt any THREE of the following:	12
<i>J</i> .	(a)	Write C program for performing following operations on array:	4M
	(a)	insertion, display.	41/1
	Ans.	#include <stdio.h></stdio.h>	
	Alis.	#include <conio.h></conio.h>	
		void main()	
		{ inta[10],x,i,n,pos;	
		inta[10],x,1,11,pos, clrscr();	
		printf("Enter the number of array element\n");	
		scanf("%d",&n);	
		printf("Enter the array with %d element\n", n);	Correct
		for $(i=0; i< n; i++)$	
		101(1=0,1<11,1++) scanf("%d",&a[i]);	program 4M
		, E 3//	4111
		printf("Enter the key value and its position\n");	
		scanf("%d%d",&x,&pos);	
		$for(i=n; i \ge pos; i)$	
		a[i]=a[i-1];	
		} 13	
		a[pos-1]=x;	
		printf("Array element\n");	
		for(i=0;i <n+1;i++)< th=""><th></th></n+1;i++)<>	
		printf("%d\t",a[i]);	
		getch();	
		}	
	(b)	Evaluate the following postfix expression:	4M
	(-7)	5, 6, 2, +, *, 12, 4, /, - Show diagrammatically each step of	
		evolution using stack.	
	Ans.		

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

y 222															
	Scanned	On	eranc	1 1	One	rand	2	W ₀	lue	Stac	J _z				
	Symbol	Op	Cranc	1 1	Ope	ianu		Va	nue		tent				
	5									5	tent				
	6									5,6					Correct
	2									5,6,	2				answer
	+	6			2			8		5,8					<i>4M</i>
	*	5			8			40		40					
	12									40,1	2				
	4									40,1	2,4				
	/	12			4			3		40,3	3				
	-	40			3			37		37					
	Result of a														
(c)	Sort the fe										usiı	ng (quicl	k sort.	4M
	Given nun		s 50,	2, 6	, 22,	3, 39), 4	9, 25	5, 18	, 5.					
Ans.	Given arra	y													
	Array	50	2	6	22		3	39	49	2:	5	18	5		
	elements														Correct
	indexes	0	1	2	3	4	1	5	6	7		8	9		solve
	Set l=0, h=	-0 n	ivot-	- a[h	1–5										example 4M
	Initialize in	_				nent	i=	= 1-1	=-1						71/1
	Traverse el								_ •						
						J									
	1. j=0 i=-	1 sin	ce a[j] >	pivot	do n	otł	ning	array	y will	rem	ain	sam	e	
	Array elements	50	2		5 2	22	3	39	49	2:	5	18	5		
	indexes	0	1	,	2	3 .	4	5	6	7	,	8	9		
	mackes	U	1	'	_ .	<u>, I</u>	т	<u> </u>	1 0			0			
	2. j=1 sii i=0		[j]<=	pivo	ot, do	i++	and	d sw	ap(a	[i], a[j])				
	Array		5 Λ	(22	2		,	40	25	10		5		
	elements	2	50	6	22	3		39	49	25	18		5		
	indexes	0	1	2	3	4		5	6	7	8		9		

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

Subject: Data Structure Using 'C'

Subject Code:

22317

2	: 0 : 0 -:	F:1 s			!11	
3.	1=2, $1=0$ sinc	e a 1 >	· pivot ac	nothing	array will	remain same

Array elements	2	50	6	22	3	39	49	25	18	5
indexes	0	1	2	3	4	5	6	7	8	9

4. j=3 ,i=0 since a[j] > pivot do nothing array will remain same

Array elements	2	50	6	22	3	39	49	25	18	5
indexes	0	1	2	3	4	5	6	7	8	9

5. j=4, since $a[j] \le pivot do, i++ and swap(a[i],a[j])$

Array elements	2	3	6	22	50	39	49	25	18	5
indexes	0	1	2	3	4	5	6	7	8	9

6. j=5 , i=1 since a[j] > pivot do nothing array will remain same

Array elements	2	3	6	22	50	39	49	25	18	5
indexes	0	1	2	3	4	5	6	7	8	9

7. j=6, i=1 since a[j] > pivot do nothing array will remain same

Array elements	2	3	6	22	50	39	49	25	18	5
indexes	0	1	2	3	4	5	6	7	8	9

8. j=7, i-1 since a[j] > pivot do nothing array will remain same

Array elements	2	3	6	22	50	39	49	25	18	5
indexes	0	1	2	3	4	5	6	7	8	9

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

Subject: Data Structure Using 'C'

Subject Code:

22317

9.	i=8, i-1	since a[j] >	pivot do	nothing	array will	remain	same
- •	J - ,	since all i	P- 100 000				

Array elements	2	3	6	22	50	39	49	25	18	5
indexes	0	1	2	3	4	5	6	7	8	9

We come out of loop because j is now equal to high-1.

Finally we place pivot at correct position by swapping a[i+1] and a[h] (or pivot)

 $a[] = \{2,3,5,22,50,39,49,25,18,6\} // 6 \text{ and } 5 \text{ Swapped}$

Now, **5**is at its correct place. All elements smaller than 5 are before it and all elements greater than 5 are afterit.

Similarly rest of the passes will be executed and will provide the following output

Output of pass1

Array elements	2	3	5	22	50	39	49	25	18	6
indexes	0	1	2	3	4	5	6	7	8	9

Pass2

 $A = \{2.3\} \text{ pivot} = 3$

LJ (7-)			
Array elements	2	3	5
indexes	0	1	2

 $a[]=\{22.50.39.49.25.18.6\}$ pivot=6

Array	6	50	39	49	25	18	22
indexes	3	4	5	6	7	8	9

a[]={50,39,49,25,18,22}pivot=22

Array elements	18	22	49	25	50	39
indexes	4	5	6	7	8	9

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

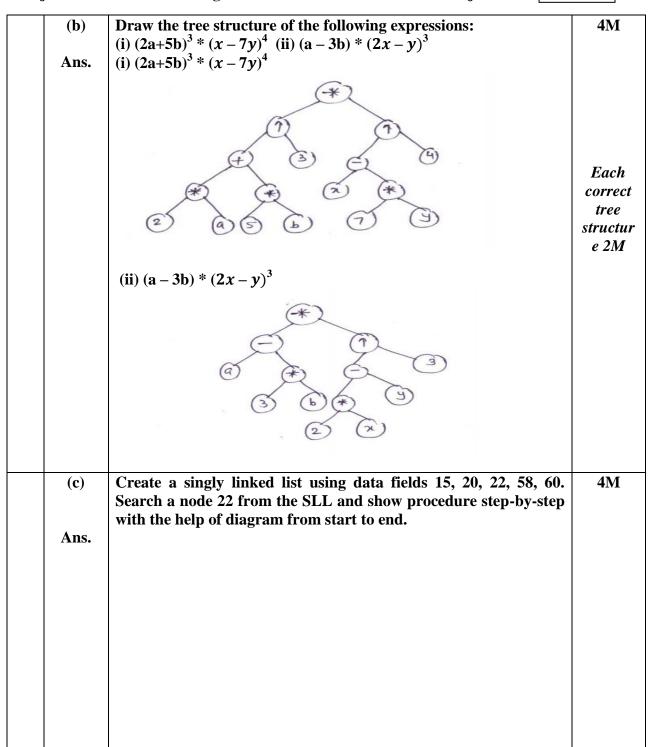
	a[]={18}pi	vot=	=18										
	Array		18		22								
	elements indexes		4		5								
	muexes		+										
	a[]={49,25	,50,	39},	pivo	t=39	9							
	Array elements		25		39		50	4	9				
	indexes		6		7		8	9)				
	a[]={25}, p	oivo	t=25										
	Array elements		25		39								
	indexes		6		7								
	a[]={50,49	ig,{	vot=	49									
	Array		49		50								
	elements												
	indexes		8		9								
	Final sorte	d a	rray	usi	ng c	_l uick	sort v	vill be	<u>.</u>				
	Array elements	2	3	5	6	18	22	25	39	49	50		
	indexes	0	1	2	3	4	5	6	7	8	9		
	macxes	U	1		3	-		0	,	0		_	
(d)	From the f	ollo	win	g gr	aph	, com	plete	the a	nswer	'S:			4M
						•	7						
					Land	C arrownia							
		1	/	1					sein				
	bida (<)	-		1	a didea	*				
	(I	9			19)		1		(14)	0.53			
			67				(3)		grow Ta				
	200		9	Agas	g hest								
	(i) Indegr	ee (of no	de 2	21								
	(ii) Adjace												

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

	- I				
		` '	oth of 31		
	A	(iv) St	accessor of node 67		
	Ans.	(i) Ind	egree of node 21:		
		(1) 1110	node 1, 7, 19		
			1, 7, 15		
		(i1) A	djacent node of 19:		
			node 1,21		
					Each
		(iii) Pa	th of 31:		correct
			Path1: 1-21-31		answer
			Path2: 1-7-21-31 Path3: 1-7-21-31		<i>1M</i>
			1 aui3. 1-7-21-31		
		(iv) Su	accessor of node 67: No Succes	sor of node 67 since it is	
		` /	lated node or not connected no		
4.		Attem	pt any THREE of the followi	ng:	12
	(a)		· ·	h and sequential search (linear	4M
		search	ı) .		
	Ans.	C.	Dimoury Coords	Cogney tipl goods (linear	
		Sr. No.	Binary Search	Sequential search (linear search)	Any
		1	Input data needs to be sorted	Input data need not to be	four
			in Binary Search	sorted in Linear Search.	points
		2	In contrast, binary search	A linear search scans one	1M each
			compares key value with the	item at a time, without	
			middle element of an array	jumping to any item.	
			and if comparison is		
			unsuccessful then cuts down		
			search to half.	7. 1	
		3	Binary search implements	Linear search uses sequential	
			divide and conquer approach.	approach.	
			1 1 1	1	İ
		4	In binary search the worst	In linear search, the worst	
		4	In binary search the worst case complexity is O(log n)	In linear search, the worst case complexity is O(n),	
		4	In binary search the worst case complexity is O(log n) comparisons.	In linear search, the worst case complexity is O(n), comparisons.	
		5	case complexity is O(log n)	case complexity is O(n),	

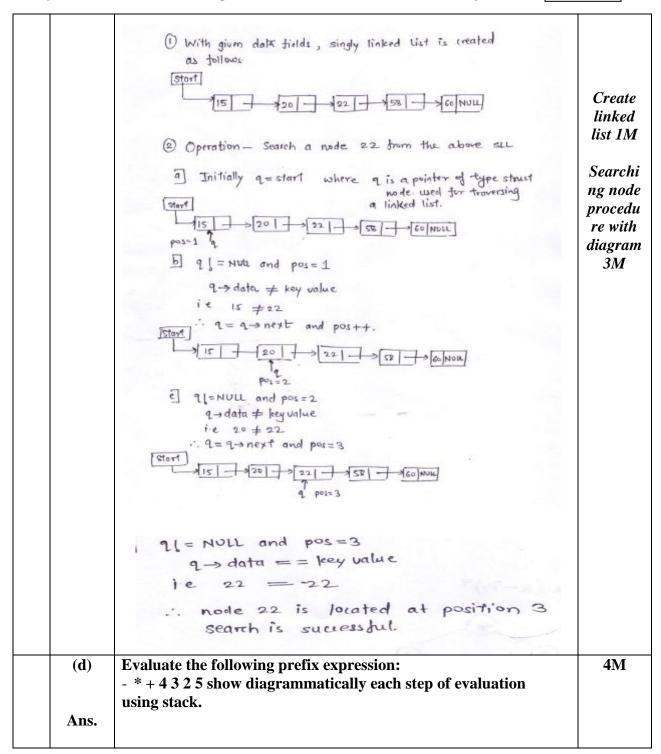

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

Subject: Data Structure Using 'C'

Subject Code: 22317


(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

Subject: Data Structure Using 'C'

Subject Code: 22317

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

		Scanned	Operand 1	Operand 2	Value	Stack					
		Symbol	operana i	operana 2	Value	Content					
		5				5	Each				
		2				5,2	correct				
		3				5,2,3	step 1M				
		4				5,2,3,4	~~~ F ==-=				
		+	4	3	12	5,2,12					
		*	12	2	24	5,24					
		_	24	5	19	19					
			24		17	17					
		Result of a	bove prefix e	xpression eva	luation -	· 19					
	(e)	Write an	algorithm t	-		m the beginning of	a 4M				
		circular li	nked list.								
	Ans.	4.7		1 0							
		_	to delete a	a node from	the bo	eginning of a circula	r				
		linked list	C 4: 1	1.4.0							
		Consider the function delatbeg()									
		1. Start									
		2. Declare struct node *tmp,*q;3. Set q=last->link;									
		_					m 4M				
		4. While	q! = last								
		Do tmn = 1	// Idontif	iaa baainnina	node of	Cinavlan Linkad List					
		_	_			Circular Linked List	~				
			nk=q->nnk; ed node	// Set the	address	field before deletin	g				
				// Doloto the l	oginnin	a nodo					
		free(tm End of	•	// Delete the b	egiiiiiii	g noue					
				lost— NIII I	f only o	ne node is present in th					
			r Linked List		i Omy O	ne noue is present in th					
		6. End of		•							
5.				the following	•		12				
J.	(a)					tion on to the stack o					
	(4)				-	9, 45, 50 with 50 bein					
						the effect of:					
		(i) PUSH		ii) PUSH 85	•						
		(iii) POP	,	(iv) POP							
		(v) PUSH		(vi) POP							
		` ′		. ,	k after	performing the abov	e				

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

J											
	said operations.										
Ans.	9 9 9 9 8 8 85 8 9 9 8 8 8 1 1 1 1 1 1 1	Each correct push/po p operatio n diagram maticall y 1M									
(b)	Traverse the following tree by the in-order, pre-order and post- order methods:	6M									
	order methods.										
	3 9										
	0 0 0										
Ans.	INORDER (LVR) 1,10,15,20,22,25,32,36,43,48,50,56,58,60,75	in-order 2M									
	PREORDER (VLR)										
	36,25,20,10,1,15,22,32,48,43,56,50,60,58,75	order2M									
	POST ORDER (LRV)	post-									
	1,15,10,22,20,32,25,43,50,58,75,60,56,48,36	order2M									

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

	(c)	Write an algorithm to count number of nodes in singly linked list.	6M
	Ans.	Let	
		start is pointer variable which always stores address of first node in	
		single linked list. If single linked list is empty then start will point to	
		NULL.	
		q is pointer variable used to store address of nodes in single linked	a .
		list.	Correct
		Step 1: Start	algorith m 6M
		Step 2: [Assign starting address of single linked list to pointer q] q=start	m ow
		Step 3: [Initially set count of nodes in Linked list as zero] count=0	
		Step 4: [Check if Linked list empty or not]	
		if start==NULL	
		Display "Empty Linked List"	
		go to step 6.	
		Step 5: [Count number of nodes in single linked list] while q!=NULL count++ and q=q->next;	
		Step 6: Display count (total number of nodes in single linked list)	
		Step 7: stop	
6.		Attempt any TWO of the following:	12
	(a)	Sort the following numbers in ascending order using Bubble sort.	6M
		Given numbers: 29, 35, 3, 8, 11, 15, 56, 12, 1, 4, 85, 5 & write the	
	A = : ::	output after each interaction.	
	Ans.	Pass 1	
		Enter no of elements :12	
		Enter array elements :29 35 3 8 11 15 56 12 1 4 85 5	
		Unsorted Data: 29 35 3 8 11 15 56 12 1 4 85 5	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

 1												1
After pass 1:	29 3 29 3 29 3 29 3 29 3	3 <u>35</u>	8 35 11 11 11 11 11 11	11 11 35 15 15 15 15 15 15	15 15 15 15 35 35 35 35 35 35 35 35 35 35	56 56 56 56 <u>56</u>	12 12 12 12 12 12 56 1 1	1 1 1 1 1 1 56 4 4 4	4 4 4 4 4 4 56 56	85 85 85 85 85 85 85 85 85 85 85	5 5 5 5 5 5 5 5 5 85	Correct passes 6M (For 4 passes 3M shall be awarded
After pass 2: After pass 3:	3 29 3 8 3 8 3 8 3 8 3 8 3 8 3 8 3 8	29 11 11 11 11 11 11 11	11 29 15 15 15 15 15	15 15 29 29 29 29 29 29	35 35 35 35 12 12 12 12	1 1 1	4	4 4 4 4 4 4 35 35 35	56 56 56 56 56 56 56 56 56	5 5 5 5 5 5 5 5 5 5	85 85 85 85 85 85 85 85 85 85	
After pass 3:	3 8 3 8 3 8 3 8 3 8 3 8 3 8 3 8	11 11 11 11 11 11	15 15 15 15 15 15 15	29 29 29 12 12 12 12	1 1	1 1 1 29 4 2 4 2	4 4 4 4 4 29	35 35 35 35 35 35 35 35 5	5 5 5	56 56 56 56 56 56 56 56	85 85 85 85 85 85 85 85	
After pass 4: After pass 4: After pass 4: After pass 4:		11 11	15 15	12 12	1 1 1 1	4 2 4 2 4 2 4 2	29 29	5 5	35 35	56 56	85 85	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

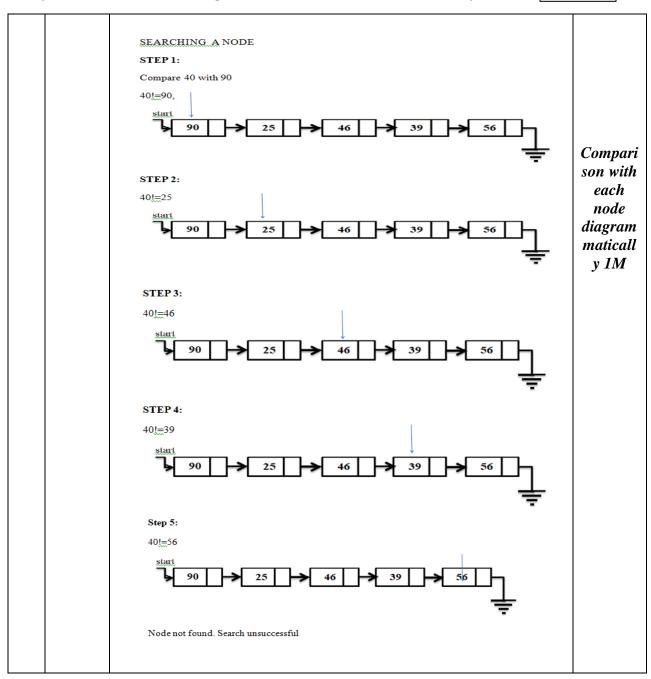
Subject: Data Structure Using 'C'	Subject Code:	22317

	Ι .														П	
	After pass 4:	3	8		12				29		35					
	After pass 4:	3	8	11	12	1	4	<u>15</u>	29		35	56	85			
	After pass 4:	3	8	11	12	1	4	15	<u>29</u>	5	35	56	85			
	After pass 4:	3	8	11	12	1	4	15	5	29	35	56	85			
	•															
	Pass 5															
	After pass 5:	3	8	11	12	1	4	15	5	29	35	56	85			
	After pass 5:		8	11	12		4	15	5	29	35	56	85			
	After pass 5:		8	11	12		4	15	5			56	85			
	After pass 5:	3		11		<u>12</u>		15		29			85			
		3		11	1		<u>12</u>	15			35					
		3		11	1		12	<u>15</u>	5		35					
	After pass 5:	3	8	11	1	4	12	5	<u>15</u>	29	35	56	85			
	Pass 6															
	After pass 6:	3	8	11	1	4	12	5	15	29	35	56	85			
	After pass 6:		8	<u>11</u>	1	4	12	5	15	29	35	56	85			
	After pass 6:	3	8		<u>11</u>		12			29		56	85			
	After pass 6:	3		1		<u>11</u>					35		85			
		3			4		12				35					
	After pass 6:		8	1		11	5				35					
	Tittel pass 0.	5	O	1	_	11	J	12	13	2)	33	50	03			
	Pass 7															
	F 488 /															
	A 64 a.m. m. a.a.a. 7 .	2	0	1	4	11	_	12	15	20	25	56	05			
	After pass 7:		8	1		11			15		35	56	85			
	After pass 7:	3		8		11	5		15	29	35	56	85			
	After pass 7:	3		4		11		12			35	56	85			
	After pass 7:	3	1	4				12			35		85			
	After pass 7:	3	1	4	8	5	<u>11</u>	12	15	29	35	56	85			
	Pass 8															
	After pass 12:	1	3	4	8	5	11	12	15	29	35	5 56	85			
		_	-													
	Sorted eleme	nte	gra	1	3	4	8	5 1	1 1	2	15 ′	29 3	35 5	5 85		
		1113	ai (, 1	J	_	U	<i>J</i> 1	. 1	L 4 .	10 1	-, .	,,)	, 05		
(I-)														(N.I		
(b)	Evaluate the following postfix expression:												6M			
	57+62-*															
Ans.																

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER


Structure Usii	ig C				Subject C	.oae:	
Symbols to be scanned 5 7 + 6 2 - *	4 3	STACI 2 2	7 6 6 4	0 5 5 12 12 12 12 12 48	Expression Evaluation and Result 7+5=12 6-2=4 12*4		Correct evaluati ve 6M
Search a node with the help To Search a dadata field from ORIGINAL I	e 40 from to of diagram that field in so first node LIST: 25 A NODE	the SLin from singly lof sing	L and start tinked I	show to end list, no ed list	procedure step l. eed to start search	o-by-step	6M List creation 1M
	be scanned 5 7 + 6 2 - * Create a sing Search a node with the help To Search a dadata field from ORIGINAL I	be scanned 4 3 5 7 + 6 2 - * Create a singly linked Search a node 40 from twith the help of diagram To Search a data field in state data field from first node ORIGINAL LIST: statt 90 25 SEARCHING A NODE STEP 1: Compare 40 with 90	be scanned 4 3 2 5 7 + 6 2 2 - * Create a singly linked list us Search a node 40 from the SL with the help of diagram from To Search a data field in singly I data field from first node of sing ORIGINAL LIST: SEARCHING A NODE STEP 1: Compare 40 with 90	be scanned 4 3 2 1 5 7 7 7 + 6 6 6 6 2 2 6 4 * Create a singly linked list using daysearch a node 40 from the SLL and with the help of diagram from start to Search a data field in singly linked data field from first node of singly linked data field from first node of singly linked start to Search a data field in singly linked data field from first node of singly linked start to Search a data field in singly linked data field from first node of singly linked start to Search a data field in singly linked start to Search	be scanned 4 3 2 1 0 5 5 5 7 7 7 5 + 12 6 6 6 12 2 2 6 12 - 4 12 * 48 Create a singly linked list using data fi Search a node 40 from the SLL and show with the help of diagram from start to end To Search a data field in singly linked list, no data field from first node of singly linked list ORIGINAL LIST: Start 90 25 46 39 SEARCHING A NODE STEP 1: Compare 40 with 90	be scanned 4 3 2 1 0 Evaluation and Result 5	be scanned 4 3 2 1 0 Evaluation and Result 5 5 5 7 7 5 + 12 7+5=12 6 6 6 12 2 2 2 6 12 6-2=4 - 4 12 * When the series of the series of the start searching the data field from first node of singly linked list. Create a singly linked list using data fields 90, 25, 46, 39, 56. Search a node 40 from the SLL and show procedure step-by-step with the help of diagram from start to end. To Search a data field in singly linked list, need to start searching the data field from first node of singly linked list. ORIGINAL LIST: SEARCHING A NODE STEP 1: Compare 40 with 90

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

